Machine learning has been, and will continue to be, one of the biggest topics in data for the foreseeable future. And while we in the data community are all still riding the high of discovering and tuning predictive algorithms that can tell us whether a picture shows a dog or a blueberry muffin, we’re also beginning to realize that ML isn’t just a magic wand you can wave at a pile of data to quickly get insightful, reliable results.
This is a companion discussion topic for the original entry at https://greatexpectations.io/blog/ml-ops-data-quality/