followed this Engine Configuration — SQLAlchemy 2.0 Documentation
my_engine = create_engine(
    "databricks+connector://token:*****06ca0cd575@****48527138139.9.gcp.databricks.com:443/checkout",
    connect_args={
        "http_path": "sql/protocolv1/o/****748527138139/0915-092710-***i3xlf",
    },
)
datasources configuration
example_yaml = f"""
name: {datasource_name}
class_name: Datasource
execution_engine: {my_engine}
data_connectors:
  default_runtime_data_connector_name:
    class_name: RuntimeDataConnector
    batch_identifiers:
      - default_identifier_name
  default_inferred_data_connector_name:
    class_name: InferredAssetSqlDataConnector
    # include_schema_name: True
    # introspection_directives:
    #   schema_name: {schema_name}
  default_configured_data_connector_name:
    class_name: ConfiguredAssetSqlDataConnector
    assets:
      {table_name}:
        class_name: Asset
        #schema_name: {schema_name}
"""
print(example_yaml)
context.test_yaml_config(yaml_config=example_yaml)
throw this error:
ValidationError: {'execution_engine': {'_schema': ['Invalid input type.']}}